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Introduction
Biomarkers, as measurements of defined biologic characteris-
tics, can play a pivotal role in estimations of disease risk, early 
detection, differential diagnosis, assessment of disease progres-
sion and outcomes prediction.1 Cancer biomarkers used in 
clinical practice often measure specific molecular markers, 
including somatic gene alterations or protein expression, but 
may also measure characteristics defined by gene expression 
signatures or tumour imaging.2

Applications of biomarkers in drug development enable 
patient stratification to optimize therapeutic efficacy and safety, 
and measurement of drug-dependent biologic responses (phar-
macodynamics) to evaluate mechanisms of drug action.3 
Owing to the wide variety of biomarker categories, the advent 
of ‘omic’ data and the interest in patient stratification for per-
sonalized medicine, studies of cancer biomarkers are published 
daily. As a result of in-depth research over time, some are well 
characterized, whereas others are emerging biomarkers of 
growing interest.

Although the biomedical literature represents a valuable 
source of cancer biomarker-related information, managing this 
flow of information is challenging for scientists and clinicians. 
There are limited biomarker data in publicly available databases, 
but it is likely that further insights remain hidden in the aca-
demic literature owing to the limitations of standard keyword-
based searching and the sheer volume of available literature. To 
help to address this challenge, semi-automated text-mining and 

innovative approaches to the synthesis and visualization of the 
output are required.

Recently, text-mined gene-disease term co-occurrence in 
abstracts has been used to suggest additional genes to be 
included in cancer gene panels, by identifying the characteris-
tics of an existing gene panel and suggesting genes with related 
features.4 Other text-mining pipelines seek to identify dis-
ease-related mutations using content derived from titles and 
abstracts,5,6 while others utilize full-text publications but 
are restricted by inclusion of open-access articles only.7,8 
Exploration of gene-gene co-occurrence networks from 
abstract-derived text-mined data indicate that clusters may 
contain genes that are directly or indirectly related based on 
physical interactions, co-expression or through signalling path-
ways.8 However these approaches, which are limited in scope, 
have so far demonstrated limited utility in enhancing or facili-
tating the process through which researchers access the litera-
ture to identify and to prioritize biomarkers of interest.

Here we report the development of a novel text-mining 
method that employs not only biomarker co-occurrence 
processing applied to a deeply indexed full-text database 
(Dimensions),9 but also utilizes time-interval delimited 
networks to identify biomarkers of greater potential biologic 
relevance based on the emergence over time of term 
co-occurrence.

The development process is described using an associated 
interactive open-access research tool with examples of the 
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application of this approach to evaluate biomarkers of potential 
emerging scientific interest in cancer.10

Methods
Identifying relevant publications mentioning 
biomarkers and cancer

A publicly available data set comprising 726 cancer biomarkers 
was obtained from the Early Detection Research Network 
(EDRN),11 an initiative of the National Cancer Institute focus-
sing on the clinical application of early cancer detection strate-
gies, and was used to seed our literature searches.

To identify an initial set of publications of interest, we per-
formed co-occurrence searches for each biomarker in the 
EDRN data set in 20-word proximity to terms relating to 6 
cancer sites (bladder, breast, colorectal, lung, prostate and renal 
[Table 1] using the Dimensions-linked scholarly information 
platform. We extracted biomarker relationships to cancer terms 
from searches of full-text publications in English, including 
proceedings and preprints, from 1 January 2015 to 31 December 
2020.

This search methodology identified articles of interest, 
defined as those with at least 1 biomarker and at least 1 term 
relating to a given cancer site within a 20-word proximity 
(denoting relevance to one of the specified cancer sites). To 
focus our study on biomarkers of emerging research interest, 
those with less than 5 or more than 1000 unique publication 
mentions were excluded.

Identifying relevant publications co-mentioning 
biomarkers by text mining

Following the initial identification of publications of interest, 
we text-mined the resulting corpus. Each publication was pre-
processed through tokenization (to simple unigrams), removal 
of punctuation and stop words, and conversion of uppercase 
text to lowercase.

To identify biomarkers that are likely to be mentioned in a 
shared biological context, we searched for the co-occurrence of 
1 biomarker with another within a 20-word proximity; these 
were defined as co-occurring biomarker pairs. Co-occurrence 
proximity windows of 10 words and 30 words were also 

experimented with but ad hoc analysis indicated that a 10-word 
window is slightly too short and often misses potentially mean-
ingful co-occurrences. On the other hand, 30-word windows 
are too liberal and produce a network too dense to be meaning-
ful. However, to identify further which biomarker pairs were 
more likely to represent biologically relevant relationships, only 
biomarker pairs that co-occurred more than once in the same 
publication and that also had co-occurred in at least 2 publica-
tions were included.

Network analysis

We generated 7 networks, 1 for each cancer site and a ‘cancer-
agnostic’ network that included all publications identified in 
the search for each of the 6 cancer sites. To help us to under-
stand the extent of co-occurrence between the selected bio-
markers, we then generated undirected co-occurrence networks. 
Using the NetworkX Python package, 1 network was produced 
for each cancer site, in addition to 1 network containing links 
found across all cancer sites we investigated. Each node in the 
resultant networks represents a biomarker and an edge between 
2 biomarkers represents co-occurrence. A given co-occurrence 
is considered significant if it appears at least twice in a given 
publication. An edge is formed between 2 biomarkers if a sig-
nificant co-occurrence is discovered in at least 2 separate 
publications.

Edge weight was used to calculate the betweenness central-
ity of the nodes and the cluster structure of the network. The 
weight was calculated as n

min n n
ij

i j( , )
, where nij  is the num-

ber of publications in which a significant co-occurrence was 
discovered between biomarkers i and j, and ni  and n j  are the 
number of publications in which biomarkers i and j were found 
(respectively, and for the specific cancer). This formulation of 
weight was chosen because of 2 desirable properties. First, and 
rather naturally, a higher number of publications containing 
co-occurrence results in a higher weight, and hence strength of 
relationship between the 2 nodes. Second, because of the 
min(ni,nj) in the denominator, edge weight remains strong if 
the association between the 2 biomarkers is asymmetric (ie, A is 
strongly associated to B, but B is not strongly associated to A). 

Table 1.  Search terms used to identify specific cancer sites.

Cancer site Cancer terms

Bladder Bladder cancer, bladder carcinoma, urinary bladder neoplasms

Breast Breast cancer, breast carcinoma, breast neoplasms

Colorectal Bowel cancer, colon cancer, colonic neoplasms, colorectal cancer, rectal cancer

Lung Lung cancer, lung neoplasms, NSCLC, SCLC, small cell lung carcinoma

Prostate Prostate cancer, prostatic neoplasms

Renal Kidney cancer, kidney neoplasms, renal cell carcinoma, RCC

Abbreviations: NSCLC, non-small cell lung carcinoma; RCC, renal cell carcinoma; SCLC, small cell lung carcinoma.
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The converse being that the weight remains low in the case in 
which you are considering 2 very commonly mentioned bio-
markers, that just by chance will inevitably co-occur with each 
other in some publications. For each biomarker node, only the 
4 strongest edges were included in the network.

The biomarker networks, constructed as described above, 
are published on the Network Data Exchange (NDEx) 
platform,12 and the nodes and edges are enriched with a variety 
of metadata.

On the assumption that, compared with the entire network, 
clusters of co-occurring biomarkers are more likely to represent 
biologically relevant relationships, highly connected clusters 
were built using the Leiden algorithm in the leidenalg Python 
package.13 Specifically, we used the ModularityVertexPartition 
modularity implementation and optimized over 1000 itera-
tions using the Optimiser().optimise_partition function. To 
prepare the graph data for compatibility with the leidenalg 
package, the network was first converted to the igraph format.

To sharpen further our focus on biomarkers with emerging 
interest, publication growth rate was determined by calculating 
a linear fit of normalized publication number over time (in 
years) for all biomarkers in each cancer site. To identify clusters 
with the fastest-growing scientific interest, we calculated the 
mean publication growth rate across all biomarkers in each 
cluster.

Contextual analysis

We reviewed the textual context for selected biomarker publi-
cations to provide insights into the effectiveness of the meth-
odology for identifying meaningful connections between 
biomarkers. This allowed us to extract biological processes and 
pathways linked to the biomarkers and cancer biology. Search 
results were classified as ‘successful’ if one of the co-occurring 
biomarker pairs was found in proximity to the desired cancer 
site and the biomarker co-occurrence was biologically mean-
ingful. We classified identified articles as an ‘unsuccessful’ hit 
if biomarkers were found in proximity to a specific cancer but 
only in the reference section of the article or were incorrectly 
associated with the target cancer site. To gather data on 
Mendeley captures, we used the Altmetric platform and per-
formed the analysis in R. We selected 3 different sets of pub-
lications using different approaches (detailed below), each 
seeking to identify biomarkers or publications of highest 
interest. As a starting point for each, we identified biomarker 
clusters that exhibited high publication growth rates. The 
fastest-growing clusters contained few biomarkers and were, 
therefore, susceptible to skew from a single fast-growing bio-
marker. For this reason, we selected from clusters containing 
at least 10 biomakers.

(1) � Biological processes related to prominent biomarker 
pair. From the fastest-growing cluster across all 6 can-
cer networks, we identified the biomarker pair with 

the highest number of co-occurrences, either internal 
or external to the cluster, and examined all their con-
nections with other biomarkers. First, we looked for 
these pairings in biological pathways databases, namely 
the Biological General Repository for Interaction 
Datasets (BioGRID),14 Reactome,15 HumanNet v316 
and (HIPPIE).17 Next, we examined the textual con-
text within all publications that mentioned the target 
biomarker pair.

(2) � Biological context of biomarker mentions (cancer-
specific). We then identified the cluster with the sec-
ond-fastest growth rate. Instead of reviewing in depth 
a single pair, we examined the 20 publications within 
the cluster with the highest number of Mendeley cap-
tures, taking Mendeley saves as a proxy for scholarly 
interest.

(3) � Biological context (cancer-agnostic). Lastly, we identi-
fied the fastest-growing cluster in the cancer-agnostic 
network, and examined the top 20 papers by Mendeley 
captures.

In all cases, biological processes associated with biomarkers 
were mapped to the National Cancer Institute Thesaurus 
(NCIt) ontology.18

Gene set enrichment analysis

Gene set enrichment analysis on biomarkers contained in the 3 
clusters identified above was carried out using the R package 
enrichR, an interface to the Enrichr database.19 Biomarkers 
contained within each cluster defined a gene set used to 
query against terms in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) molecular pathways and the Gene 
Ontology (GO) Biological Process libraries. Enrichment terms 
were ranked by P value and genes overlapping with the anno-
tated genes sets identified. P values were computed using the 
hypergeometric test (Fisher’s exact test), which assumes a bino-
mial distribution and independence of any gene belonging to 
any gene set. The null hypothesis was that proportion of genes 
in the cluster gene set annotated with a given pathway or pro-
cess term did not differ from the overall proportion of genes in 
the genome annotated with the same pathway or process.

Results
Biomarker co-occurrence

The Dimensions search identified 255 942 unique full-text 
publications. Many of these publications were relevant to more 
than 1 cancer site (Table 2). Of these publications, 92 395 con-
tained at least 1 biomarker pair. The results of our searches and 
network analysis are summarized in (Figure 1).

The set of pairwise biomarker co-occurrences spanned 31 
550 unique pairs across all cancer sites; the most commonly 
co-occurring biomarker pairs were matrix metalloproteinase 



4	 Cancer Informatics ﻿

(MMP)1-MMP3, microRNA (miR)21-miR210 and miR126-
miR21, with co-occurrences in 820, 632 and 510 publications, 
respectively.

Biomarker networks

Overview of networks.  We generated biomarker co-occurrence 
networks for each of the 6 cancer sites and the cancer-agnostic 
data set, accessible on the NDEx platform. To take forward our 
results for validation and further analysis, we identified the 
clusters with the highest mean publication growth rate for each 
network (Figure 2).

Biological processes related to prominent biomarker pair.  Based on 
publication growth rate, we selected renal cancer cluster 1 
(Figure 3). Renal cancer cluster 1 comprised 354 unique 
publications: 311 associated with its nodes, reflecting 

publications co-mentioning the biomarker in this cancer site, 
and 140 associated with its edges, representative of biomarker 
co-occurrences.

The most mentioned biomarker in renal cancer cluster 1 was 
C-X-C motif chemokine ligand (CXCL)5 with 74 publica-
tions, whereas the biomarker pair with the most co-occurrences 
either internal or external to the cluster was CXCL5-CXCL2 
with 122 co-mentions in 34 publications (Figure 4). Twenty of 
the 42 biomarker pairs were already annotated in known bio-
logical pathways databases (Supplemental Table 1).

To assess whether our methodology successfully identified 
literature references describing biologically relevant biomarker 
relationships, we manually reviewed each publication. All 34 
publications were valid in terms of their relevance to cancer 
biology, with 16 being specific to renal cancer, 3 not being spe-
cific to a cancer site and 15 having incorrect identifications of 
cancer site. The majority of the papers (19/34) were narrative 
reviews, with the remainder being preclinical reports (13/34), a 
phase 1 clinical trial (1/34) and a cohort study (1/34). 
Exploration of these papers using the number of Mendeley 
captures as a proxy for academic interest revealed that articles 
discussing chemokines as therapeutic targets were of most 
interest.

Identified biological processes were mapped to the NCIt 
ontology14 and were consistent with a proinflammatory role for 
CXCL5 and CXCL2 acting through their common receptor 
CXCR2 on neutrophils in the tumour microenvironment, 
influencing angiogenesis, myeloid cell infiltration and metasta-
sis (Supplemental Table 2). Evaluation of remaining biomarker 
pairs in this renal cluster revealed the prevalence of chemokines, 
matrix metalloproteinases and other regulators of cell-matrix 
interactions.

Table 2.  Number of publications identified for each cancer site.

Cancer site Number of publications

Breast 108 134

Lung 88 874

Colorectal 69 284

Prostate 60 644

Renal 13 727

Bladder 13 591

Total 255 942

Many of these publications were relevant to more than 1 cancer site.

Figure 1.  Analysis workflow and results.

https://www.ndexbio.org/#/group/868d05c1-e3a1-11ea-99da-0ac135e8bacf
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Figure 2.  Publication growth rate by cluster for each cancer site. The clusters with the highest publication growth rate and at least 10 biomarkers are 

highlighted red.

Figure 3.  Renal cancer biomarker network. Cluster 1 (circled) had the highest publication growth rate among clusters with at least 10 biomarkers. Node 

colour represents cluster membership. Node shape represents biomarker type. Diamond, gene; triangle, protein; hexagon, genomic; chevron, proteomic.
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Biological Context of Biomarker Mentions Within 
the Colorectal Biomarker Network
The cluster with the second highest publication growth rate 
was colorectal cancer cluster 2 (Figure 5). This cluster con-
tained 139 edges in total, of which 89 were within the cluster. 
The most common pair by co-occurrence was protein arginine 
N-methyltransferase (PRMT)5-PRMT1, with 361 co-men-
tions in 47 unique publications in which the pairing was men-
tioned more than once (Figure 6). There were 700 publications 
associated with the within-cluster edges.

To identify a subset of publications for analysis (instead of 
identifying the biomarker pair with the most co-occurrences, as 
done previously), we took the top 20 publications based on 
Mendeley captures for the entire cluster. Of these 20 publica-
tions, 15 were narrative reviews and 5 were preclinical research 
papers. These 20 publications contained 90 (51 unique) co-
mentioned biomarker pairs, of which 21 (20 unique) were 
mentioned in the context of colorectal cancer, 60 were not spe-
cific to a cancer site, and 9 (7 unique) were incorrectly identi-
fied as being associated with colorectal cancer (Supplemental 
Table 3). Of the 90 biomarker pairs, there was a direct mecha-
nistic link between 67 of them. Twenty-three of the 51 unique 
biomarker pairs were already annotated in known biological 
pathways databases (Supplemental Table 4). The most com-
mon biomarker pair was C-C motif chemokine ligand 
(CCL)17-CCL22, appearing in 9 publications.

Biomarker pairs in this colorectal cluster were mostly 
chemokines (50/51 unique pairs) and, when mapped to the 

NCIt ontology, were shown to be associated with processes 
such as cellular infiltration and chemotaxis and to have a nota-
ble emphasis on chemokines that characterize M1 and M2 
macrophages (Supplemental Table 5).

Biological Context Within the Cancer-Agnostic 
Network
The cancer-agnostic network contained 12 clusters comprising 
335 nodes with 1265 edges (Figure 7).

The cluster with the highest publication growth rate and at 
least 10 biomarkers was cluster 8, with 418 publications associ-
ated with its nodes (Figure 8). This cluster contained 26 edges 
in total, of which 11 were within the cluster. Five of the 11 
biomarker pairs were already annotated in known biological 
pathways databases (Supplemental Table 6). There were 55 
publications associated with the within-cluster edges so, to 
identify a subset of publications for analysis, we took the top 20 
publications based on Mendeley captures for the entire cluster 
(Supplemental Table 7). The most commonly occurring bio-
marker pair was stearoyl-coenzyme A desaturase (SCD)-fatty 
acid desaturase 2 (FADS2) with 143 co-mentions (Figure 9).

Of these 20 publications, 11 were narrative reviews, 7 were 
preclinical research papers, 1 was a systematic review and 
meta-analysis and 1 was a booklet of congress poster abstracts. 
These 20 publications contained 29 (8 unique) co-mentioned 
biomarker pairs of which 2 (both unique), 12 (6 unique), 
6 (5 unique), seven (4 unique), 14 (5 unique) and 0 were 
mentioned in the context of bladder, breast, colorectal, lung, 

Figure 4.  Number of biomarker co-occurrences in renal cancer cluster one. CXCL5-CXCL2 had the most co-occurrences.
Abbreviation: CXCL, C-X-C motif chemokine ligand.
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prostate and renal cancer, respectively. Twenty-five (25/29) of 
the biomarker pairs were correctly identified as being associ-
ated with the 6 cancer sites included in this study. Five of the 
unique biomarker pairs (scd-fabp5, sat1-odc1, sat1-amd1, 
fads2-evolvl2, odc1-amd1) were already annotated in known 
biological pathways databases.

Biomarker pairs in this cancer-agnostic network cluster 
were mostly related to biogenic amine metabolism (14/29) and 
fatty acid metabolism (13/29); 1 pair (1/29) was related to sui-
cide gene therapy and 1 pair (1/29) was not relevant because 
the co-mention was incorrectly identified in a congress poster 
abstract booklet (Supplemental Table 8).

Gene Set Enrichment Analysis
Renal cancer cluster 1

The top 10 enriched KEGG pathways terms showed that 
many of the biomarkers are known to be involved in cytokine 
and chemokine signalling pathways, including interleukin 

(IL)-17, tumour necrosis factor (TNF), toll-like receptor 
(TLR) and nuclear factor (NF)-kappa B signalling pathways 
(Table 3). GO biological process term enrichment highlighted 
the role of the biomarkers in chemotaxis, and cellular response to 
interferon gamma and IL-1 (Table 4).

Colorectal cancer cluster 2

Analysis of biomarkers in colorectal cancer cluster 2 showed 
that, although not all biomarkers overlapped, the same KEGG 
pathways were enriched as for renal cancer cluster 1 (Table 5). 
Similarly, GO pathways were similar, although a response to 
interferon-gamma was not identified for the colorectal cancer 
biomarker set (Table 6).

Cancer agnostic cluster 8

For the cancer-agnostic network cluster 8, KEGG pathway 
enrichment showed that few pathways were associated with 

Figure 5.  Colorectal cancer biomarker network. Cluster 2 (circled) had the highest publication growth rate and contained at least 10 biomarkers that were 

chosen for further study. Node colour represents cluster membership. Node shape represents biomarker type. Diamond, gene; triangle, protein; hexagon, 

genomic; chevron, proteomic.
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multiple biomarkers; however, the involvement of several bio-
markers in both the biosynthesis of fatty acids and peroxisome 
proliferator-activated receptors (PPAR) nuclear hormone 
receptors, which are activated by fatty acids and a potential role 
for ferroptosis were highlighted (Table 7). Few GO biological 
pathways were also associated with multiple biomarkers but 
polyamine and fatty acid biosynthesis and metabolism were 
notably enriched (Table 8).

Discussion
In this study, we developed a novel full-text literature search 
and network analytics methodology to identify cancer bio-
marker relationships of emerging scientific interest; however, 
this approach is not limited to oncology. The tool presents 
emerging biomarkers in relational context to other biomark-
ers and oncology sites of interest and enables users to identify 
rapidly publications describing these biomarker relation-
ships. It is freely accessible at https://reports.dimensions.ai/
mined-oncology-biomarkers/

The initial corpus of literature from which the network was 
built was identified by selecting publications in which bio-
marker terms occurred in proximity to specific cancer terms.

To enrich the contextual information on these biomarkers, 
the corpus of publications was text-mined to identify biomark-
ers that co-occurred, on the expectation that these paired bio-
markers would be likely to share biological context. To sharpen 
further the focus on related biomarkers of emerging interest, 

we focussed our manual validation on biomarkers and networks 
with higher publication velocity (ie, an increasing volume of 
literature attention over our time period of interest).

To test if the biomarker pairings were biologically meaning-
ful, we focussed on 3 different approaches. For each, we identi-
fied the fastest-growing clusters because we were interested in 
the fields of interest of related biomarkers.

The textual analysis confirmed that the text-mining strat-
egy was mostly successful in identifying networks and pairs of 
related biomarkers. In the renal cancer biomarker cluster 
selected for review, the CXCL2 and CXCL5 pair occurred 
most commonly. Not only do they both signal through the 
same receptor, C-X-C motif chemokine receptor (CXCR)2, 
but they are differentially expressed in multiple cancer sites, 
including renal cancer.20,21 This direct and mechanistic link 
between the biomarkers was described in each of the 34 publi-
cations (although not always in the context of renal cancer) and 
is annotated in the HumanNet, BioGRID and Reactome 
databases.

The KEGG pathway enrichment of the selected renal 
cancer biomarker cluster revealed that the identified bio-
markers are largely involved in cytokine and chemokine sig-
nalling, in particular the IL-1, IL-17, TNF, TLR and 
NF-kappa B pathways. Thus, our method identified bio-
markers linked to 2 important, known renal cancer pathways 
and 3 pathways that are less understood but of emerging 
interest.

Figure 6.  Number of biomarker co-occurrences in colorectal cancer cluster 2 (top 50 biomarker pairs). PRMT5-PRMT1 had the most co-occurrences.
Abbreviation: PRMT, protein arginine N-methyltransferase.

https://reports.dimensions.ai/mined-oncology-biomarkers/
https://reports.dimensions.ai/mined-oncology-biomarkers/
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IL-1 is a pro-inflammatory cytokine associated with tumour 
invasiveness and metastasis that suppresses anti-tumour immu-
nity through proliferation of polymorphonuclear myeloid-
derived suppressive cells (PMN-MDSCs).22 Moreover, IL-1 
expression is induced by by immunotherapy.22 It is proposed 
that IL-1 blockade may be a suitable monotherapy or as 
a combination therapy with other immunotherapies.22,23 
Similarly, the IL-17 axis could be an attractive target for 
immunotherapy,24 which demonstrates the potential utility of 
our technique. Emerging evidence associates IL-17 with 
tumour growth during early oncogenesis in multiple cancer 
types. Indicative of the pleiotropy of many cytokines, IL-17 
expression may also be protective, relating to cancer cell apop-
tosis and antitumoural immune cell activation.24

Pathways requiring deeper understanding are TNF, TLRs 
and NF-kappa B. The role of TNF in cancer has been contro-
versial, however it has been shown to inhibit anti-tumour 
immune response and to alter the phenotype of cancer cells, 

making them less visible to T cells and to express immune 
inhibitory molecules: further research is undeway.25 Conversely, 
in renal cancer, TNF may be pro-tumorigenic and could be a 
target for immunotherapy.26 TLRs activate several downstream 
pathways, and their involvement in cancer has resulted in the 
investigation of both TLR agonists and antagonists; however, 
understanding how these molecules might be incorporated 
into cancer treatment protocols is not fully understood.27 
NF-kappa B inhibition has been explored with little success, 
nevertheless, increased understanding of the NF-kappa B 
pathway has instigated renewed interest in the potential of 
NF-kappa B inhibitors in some cancers, including renal 
cancer.28 Furthermore, demonstrating the importance of 
context in immunoregulation, upregulation of NF-kappa B is 
proposed as a potential mediator of the anti-tumour properties 
of current immunotherapies such as checkpoint inhibitors 
and chimeric-antigen receptor T cells (CAR-T)-cell-based 
therapies, and other therapies like TLR agonists.28

Figure 7.  Cancer-agnostic biomarker network. Cluster 8 (circled) had the highest publication growth rate and contained at least 10 biomarkers that were 

chosen for further study. Node colour represents cluster membership. Node shape represents biomarker type. Diamond, gene; triangle, protein; hexagon, 

genomic; chevron, proteomic).
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In the colorectal cancer biomarker cluster selected for 
review, the most common co-occurrence was that of PRMT5 
with PRMT1, both of which have been associated with pre-
mature cellular ageing and cellular senescence.29 PRMT1 
methylates the epidermal growth factor receptor (EGFR), 
and PRMT1-mediated increased methylation, as well as the 
consequent overactivation of EGFR signalling, leads to sus-
tained cell proliferation.29 Methylation-defective EGFR 
reduced colorectal tumour growth in mice.29 Importantly, 

after treatment with the therapeutic EGFR monoclonal anti-
body cetuximab, EGFR methylation levels correlated with 
higher cancer reappearance rates and reduced survival.29 
PRMTs are therefore attractive cancer targets for small mole-
cule inhibition.

The majority of the remaining biomarker pairs in the colo-
rectal cluster and all those that were chosen on the basis of 
Mendeley saves for validation were chemokine pairings and 
were shown to be associated with processes such as cellular 

Figure 8.  Publication growth rate by cluster for the cancer-agnostic network. Cluster 8 had the highest growth rate and contained at least 10 biomarkers.

Figure 9.  Number of biomarker co-occurrences in cancer-agnostic network cluster 8. SCD-FADS2 had the most co-occurrences.
Abbreviations: FACS2, fatty acid desaturase 2; SCD, stearoyl-coenzyme A desaturase.
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infiltration and chemotaxis and to have a notable emphasis on 
chemokines that characterize M1 and M2 macrophages. Of 
further note was the pairing of colony stimulating factor 1 
(CSF1) with CXCL8; CSF1 receptor (CSF1R) inhibition 
alters chemokine secretion by cancer-associated fibroblasts, 

thereby attracting pro-tumour, (PMN-MDSCs)30 Combined 
inhibition of CSF1R and CXCR2 (the receptor for CXCL8) 
blocks MDSC recruitment and reduces tumour growth, which 
is further improved by the addition of anti-programmed cell 
death protein 1 (PD-1) drugs.30 The most common biomarker 

Table 3.  Gene set enrichment for KEGG pathways, renal cancer cluster 1.

Term Cluster genes P value

Viral protein interaction with cytokine 
and cytokine receptor

CXCL10;CCL11;CCL22;CXCL8;CCL20;
CCL4;CXCL13;CCL18;CXCL2;CCL17;CXCL5

1.18 × 10−22

Chemokine signalling pathway CXCL10;CCL11;CCL22;CXCL8;CCL20;CCL4;CXCL13;CCL18;CXCL2;CCL17;CXCL5 2.00 × 10−19

Cytokine-cytokine receptor 
interaction

CXCL10;CCL11;CCL22;CXCL8;CCL20;CCL4;CXCL13;CCL18;CXCL2;CCL17;CXCL5 2.44 × 10−17

IL-17 signalling pathway CXCL10;CCL11;CXCL8;CCL20;CXCL2;
CCL17;CXCL5

4.46 × 10−13

Rheumatoid arthritis CXCL8;CCL20;CXCL2;CXCL5;TLR2 8.18 × 10−9

TNF signalling pathway ATF2;CXCL10;CCL20;CXCL2;CXCL5 2.09 × 10−8

TLR signalling pathway CXCL10;CXCL8;CCL4;TLR2 1.20 × 10−6

Legionellosis CXCL8;CXCL2;TLR2 1.20 × 10−5

Amoebiasis CXCL8;CXCL2;TLR2 6.87 × 10−5

NF-kappa B signalling pathway CXCL8;CCL4;CXCL2 7.28 × 10−5

Abbreviations: ATF, activating transcription factor; CCL, C-C motif chemokine ligand; CXCL, C-X-C motif chemokine ligand; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; TLR, toll-like receptor.

Table 4.  Gene set enrichment for GO biological processes, renal cancer cluster 1.

Term Cluster genes P value

Chemokine-mediated signalling 
pathway (GO:0070098)

CXCL10;CCL11;CCL22;CXCL8;CCL20;CCL4;CXCL13;CCL18;CXCL2;CCL17;CX
CL5

1.26 × 10−25

Cellular response to chemokine 
(GO:1990869)

CXCL10;CCL11;CCL22;CXCL8;CCL20;CCL4;CXCL13;CCL18;CXCL2;CCL17;CX
CL5

2.89 × 10−25

Neutrophil chemotaxis (GO:0030593) CXCL10;CCL11;CCL22;CXCL8;CCL20;CCL4;CXCL13;CCL18;CXCL2;CCL17;CX
CL5

1.82 × 10−24

Granulocyte chemotaxis (GO:0071621) CXCL10;CCL11;CCL22;CXCL8;CCL20;CCL4;CXCL13;CCL18;CXCL2;CCL17;CX
CL5

2.99 × 10−24

Neutrophil migration (GO:1990266) CXCL10;CCL11;CCL22;CXCL8;CCL20;CCL4;CXCL13;CCL18;CXCL2;CCL17;CX
CL5

5.61 × 10−24

Inflammatory response (GO:0006954) CXCL10;CCL11;CCL22;CXCL8;CCL20;CCL4;CXCL13;CCL18;CXCL2;CCL17;CX
CL5;TLR2

7.00 × 10−21

Lymphocyte chemotaxis (GO:0048247) CXCL10;CCL11;CCL22;CCL20;CCL4;
CXCL13;CCL18;CCL17

3.55 × 10−18

Cytokine-mediated signalling pathway 
(GO:0019221)

CXCL10;CCL11;CCL22;CXCL8;CCL20;CCL4;CXCL13;CCL18;CXCL2;CCL17;CX
CL5

8.99 × 10−14

Response to interferon-gamma 
(GO:0034341)

CCL11;CCL22;CCL20;CCL4;CCL18;CCL17;
TLR2

1.39 × 10−13

Response to IL-1 (GO:0070555) CCL11;CCL22;CXCL8;CCL20;CCL4;CCL18;CCL17 2.35 × 10−13

Abbreviations: CCL, C-C motif chemokine ligand; CXCL, C-X-C motif chemokine ligand; GO, Gene Ontology; TLR, toll-like receptor.
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Table 5.  Gene set enrichment for KEGG pathways, colorectal cancer cluster 2.

Term Cluster genes P value

Viral protein interaction with cytokine and cytokine receptor CCL11;CXCL8;CCL22;CSF1;CCL20;CXCL13;CXCL2;CXCL5
;CXCL10;CCL4;CCL18;
CCL17;CCL28;CCL27;CCL15;CCL26

5.38 × 10−31

Cytokine-cytokine receptor interaction CCL11;CXCL8;CCL22;CSF1;CCL20;
TNFRSF11B;CXCL13;CXCL2;CXCL5;
CXCL10;CCL4;CCL18;CCL17;CCL28;CCL27;CCL15;CCL26

3.44 × 10−25

Chemokine signalling pathway CCL11;CXCL8;CCL22;CCL20;CXCL13;
CXCL2;CXCL5;CXCL10;CCL4;CCL18;
CCL17;CCL28;CCL27;CCL15;CCL26

4.88 × 10−24

IL-17 signalling pathway CXCL10;CCL11;CXCL8;CCL20;CXCL2;
CCL17;CXCL5

3.32 × 10−11

Rheumatoid arthritis CXCL8;CSF1;CCL20;CXCL2;CXCL5;TLR2 2.35 × 10−9

TNF signalling pathway CXCL10;CSF1;CCL20;CXCL2;CXCL5 3.68 × 10−7

Amoebiasis CXCL8;CXCL2;CD1A;TLR2 1.02 × 10−5

TLR receptor signalling pathway CXCL10;CXCL8;CCL4;TLR2 1.10 × 10−5

Legionellosis CXCL8;CXCL2;TLR2 6.12 × 10−5

NF-kappa B signalling pathway CXCL8;CCL4;CXCL2 3.65 × 10−4

Abbreviations: CCL, C-C motif chemokine ligand; CD, cluster of differentiation; CSF, colony stimulating factor; CXCL, C-X-C motif chemokine ligand; KEGG; Kyoto 
Encyclopedia of Genes and Genomes; TLR, toll-like receptor; TNFRSF, tumor necrosis factor receptor superfamily member

Table 6.  Gene set enrichment for GO biological processes, colorectal cancer cluster 2.

Term Cluster genes P value

Chemokine-mediated signalling pathway 
(GO:0070098)

CCL11;CXCL8;CCL22;CCL20;CXCL13;
CXCL2;CXCL5;CXCL10;CCL4;CCL18;
CCL17;CCL15;CCL26

2.81 × 10−27

Cellular response to chemokine (GO:1990869) CCL11;CXCL8;CCL22;CCL20;CXCL13;
CXCL2;CXCL5;CXCL10;CCL4;CCL18;
CCL17;CCL15;CCL26

7.66 × 10−27

Neutrophil chemotaxis (GO:0030593) CCL11;CXCL8;CCL22;CCL20;CXCL13;
CXCL2;CXCL5;CXCL10;CCL4;CCL18;
CCL17;CCL15;CCL26

6.99 × 10−26

Granulocyte chemotaxis (GO:0071621) CCL11;CXCL8;CCL22;CCL20;CXCL13;
CXCL2;CXCL5;CXCL10;CCL4;CCL18;
CCL17;CCL15;CCL26

1.27 × 10−25

Neutrophil migration (GO:1990266) CCL11;CXCL8;CCL22;CCL20;CXCL13;
CXCL2;CXCL5;CXCL10;CCL4;CCL18;
CCL17;CCL15;CCL26

2.69 × 10−25

Lymphocyte chemotaxis (GO:0048247) CXCL10;CCL11;CCL22;CCL20;CCL4;
CXCL13;CCL18;CCL17;CCL15;CCL26

7.23 × 10−21

Inflammatory response (GO:0006954) CCL11;CXCL8;CCL22;CCL20;CXCL13;
CXCL2;CXCL5;CXCL10;CCL4;CCL18;
CCL17;CCL15;CCL26;TLR2

8.34 × 10−21

Cytokine-mediated signalling pathway 
(GO:0019221)

CCL11;CXCL8;CCL22;CSF1;CCL20;
TNFRSF11B;CXCL13;CXCL2;CXCL5;
CXCL10;CCL4;CCL18;CCL17;CCL15;CCL26

2.51 × 10−16

Lymphocyte migration (GO:0072676) CCL11;CCL22;CCL20;CCL4;CCL18;CCL17;
CCL15;CCL26

2.62 × 10−16

Monocyte chemotaxis (GO:0002548) CCL11;CCL22;CCL20;CCL4;CCL18;CCL17;
CCL15;CCL26

4.01 × 10−16

Abbreviations: CCL, C-C motif chemokine ligand; CXCL, C-X-C motif chemokine ligand; GO, Gene Ontology; TLR, toll-like receptor; TNFRSF, tumor necrosis factor ligand 
superfamily member.
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pair was CCL17-CCL22, appearing in 9 publications. This 
pair is known to the HIPPIE database, confirming that our 
strategy can identify functional biomarker relationships. It is 
interesting to note, and a strength of our approach, that we 
identified biomarker pairs that are functionally related but 
not currently annotated in interaction databases. For example, 
CXCL8 and CCL15 were identified by our approach and 
both have a role in recruitment of monocytes, neutrophil, 
and myeloid-derived suppressor cells to the tumour site. 

Similarly, we identified CCL11 and CCL15, both of which 
interact with CCR3 but are not present in known interaction 
networks.

KEGG pathway enrichment of the selected colorectal can-
cer biomarker cluster identified the same pathways as for renal 
cancer. Indeed, IL-17, TNF, TLR and NF kappa B pathways 
are all associated with colorectal cancer, with IL-1 being high-
lighted in a recent systematic review as a high interest candi-
date for treatment of patients with colorectal cancer.31-35

Table 7.  Gene set enrichment for KEGG pathways, cancer-agnostic network, cluster 8.

Term Cluster genes P value

PPAR signalling pathway FADS2;FABP5;SCD;ACSL3 5.59 × 10−8

Biosynthesis of unsaturated fatty acids FADS2;SCD;ELOVL2 3.59 × 10−7

Arginine and proline metabolism AMD1;ODC1;SAT1 2.39 × 10−6

Ferroptosis ACSL3;SAT1 2.23 × 10−4

Fatty acid biosynthesis ACSL3 9.86 × 10−3

Alpha-Linolenic acid metabolism FADS2 1.37 × 10−2

Fatty acid elongation ELOVL2 1.48 × 10−2

Nicotinate and nicotinamide metabolism PNP 1.91 × 10−2

Fatty acid degradation ACSL3 2.34 × 10−2

Cysteine and methionine metabolism AMD1 2.72 × 10−2

Abbreviations: ACSL, acyl-CoA synthetase long chain family member ; AMD, adenosylmethionine decarboxylase ; EVOVL, elongation of very-long-chain fatty acids-like 
2; FABP, fatty acid binding protein; FADS2, fatty acid desaturase, KEGG; Kyoto Encyclopedia of Genes and Genomes; ODC1, ornithine decarboxylase ; PNP, purine 
nucleoside phosphorylase; SAT, spermidine/spermine N1-acetyltransferase; SCD, stearoyl-CoA desaturase.

Table 8.  Gene set enrichment for GO biological processes, cancer-agnostic network, cluster 8.

Term Cluster genes P value

Polyamine metabolic process (GO:0006595) AMD1;ODC1;SAT1 3.53 × 10−8

Fatty-acyl-coa biosynthetic process (GO:0046949) SCD;ELOVL2;ACSL3 4.98 × 10−7

Unsaturated fatty acid metabolic process (GO:0033559) FADS2;SCD;ELOVL2 3.02 × 10−6

Polyamine biosynthetic process (GO:0006596) AMD1;SAT1 5.77 × 10−6

Spermidine metabolic process (GO:0008216) AMD1;SAT1 7.69 × 10−6

Long-chain fatty acid metabolic process (GO:0001676) FADS2;ELOVL2;ACSL3 1.11 × 10−5

Alpha-linolenic acid metabolic process (GO:0036109) FADS2;ELOVL2 2.14 × 10−5

Cellular biogenic amine metabolic process (GO:0006576) AMD1;ODC1 2.14 × 10−5

Long-chain fatty-acyl-coa biosynthetic process (GO:0035338) ELOVL2;ACSL3 4.19 × 10−5

Linoleic acid metabolic process (GO:0043651) FADS2;ELOVL2 5.74 × 10−5

Abbreviations: ACSL, acyl-CoA synthetase long chain family member ; AMD1, adenosylmethionine decarboxylase 1; EVOVL, elongation of very-long-chain fatty 
acids-like; FABP, fatty acid binding protein ; FADS, fatty acid desaturase , KEGG; Kyoto Encyclopedia of Genes and Genomes; ODC1, ornithine decarboxylase 1;  SAT, 
spermidine/spermine N1-acetyltransferase ; SCD, stearoyl-CoA desaturase.



14	 Cancer Informatics ﻿

For the cancer-agnostic network cluster that was selected 
for further study, 86% (25/29) of the publications we validated 
were correctly identified as being associated with the 6 cancer 
sites included in this study. Interestingly, 14 of the biomarker 
pairings in these publications were related to fatty acid metab-
olism, 15 to biogenic amine metabolism, and 1 to suicide gene 
therapy. The most co-mentioned biomarker pair was SCD-
FADS2, with 143 co-mentions. Fatty acid metabolism is 
altered in cancer: fatty acids can mediate cancer progression 
and metastasis, and cancer cells obtain fatty acids from de novo 
synthesis and exogenous uptake. Sapeinate is generated from 
palmitate desaturation by FADS2, and monounsaturated fatty 
acids can be generated from palmitate by SCD.36 Importantly, 
FADS2 appears to compensate for SCD, so, although SCD 
inhibitors are becoming available, the compensatory activity of 
FADS2 may be important to consider therapeutically.36

KEGG pathway enrichment of the selected cancer-agnos-
tic biomarker cluster identified fatty acid biosynthesis, PPAR 
signalling and ferroptosis as pathways of interest, each of 
which could provide a novel strategy for cancer therapy. Fatty 
acids are not merely components of the cell membrane but are 
secondary messengers and sources of energy production, and 
could play a role in oncogenic signalling.36 PPAR receptors 
are ligand-activated transcription factors that have a role in 
the modulation of inflammation, cell proliferation and 
differentiation, known to impact several cancer types.37 
Ferroptosis, an iron-dependent type of cell death triggered by 
extra-mitochondrial lipid peroxidation that has been observed 
in multiple cancer types, has a pivotal role in cancer cell 
destruction.38

Across our 3 example analyses, 40/74 papers were narrative 
reviews of the preclinical literature and 25/74 were preclinical 
studies. Only 1 clinical trial was identified, and it was at phase 
1. This supports the notion that, by filtering out biomarkers 
that are already well known or with very little research volume 
and by using publication velocity as a metric, we successfully 
identified biomarker pairs that may be clinically important in 
the future.

Of note is the fact that, across the example clusters we ana-
lysed, 48/104 biomarker pairs are not annotated in the 
HumanNet, HIPPIE or Reactome interaction databases. This 
is important because it highlights the ability of text-mining 
approaches to identify potential relationships bewteeen entities 
that may not have been demonstrated in the laboratory or 
through computational prediction models based on protein 
sequence or structural data. Researchers adopting similar 
approaches could, as in the above example for the functional 
relationship between SCD–FADS2, use those biomarker pairs 
not in interaction databases to generate novel hypotheses. 
Relationships between biomarkers based on term co-occurrence 
mechanistically linked to cancer were shown in 126/153 cases, 
showing that noise is minimal, and that text-mining can be a 
useful adjunctive approach to the identification of meaningful, 
biologically relevant relationships.

Perhaps the main limitation of this approach is that it is dif-
ficult to summize the optimal parameters for term co-occur-
rence. Potential solutions to this are to use multiple word 
proximity distances or, prior to proximity detection, separation 
of the text into semantic analysis units before processing; a 
suitable context window may be sentences. Decomposition of 
the corpus into sentences may reduce noise, in that terms co-
occurring in the same sentence are highly likely to be related. 
However, this reduces sensitivity and so paragraphs may prove 
superior contextual units. Another approach could be to extract 
co-occurrence statistics not only from full publications, para-
graphs or even sentences but over the entire corpus and then 
calculate the ‘importance’ of the co-occurring terms in relation 
to the corpus, similarly to term frequency inverse document 
frequency statistics (TF-IDF). It may also be useful in future 
analyses to differentiate between co-mentions in the introduc-
tion, results or discussion sections (for non-narrative 
publications).

A further limitation is that our method does not identify the 
types of associations, for example physical protein–protein, 
transcription factor–protein or pathway interactions, the 
molecular nature of the associations (protein or mRNA expres-
sion level, somatic mutation or copy number variation), nor 
does it identify negations. However, it is likely sufficient to rep-
resent a biological relationship without distinguishing the ana-
lyte. To enable identification of association types, a context 
aware system would need to be developed. At present, the most 
powerful framework for developing such capability would be 
fine tuning a deep learning language model for a Name Entity 
Recognition task, in which the entity types correspond to the 
desired nature of associations, an important aspect of signal 
transduction pathways; pattern-based approaches could be 
developed to infer this. The heuristic approach we have 
described, while perhaps not optimal, is practical and may 
allow analysis to proceed more quickly than machine learning-
based approaches.

Further work could look to identify those biomarker pairs 
that appear in the preclinical literature and then at a later time 
point, to see if these same pairs emerge in the clinical literature, 
thus validating the approach as useful in the identification of 
‘up and coming’ biomarkers. Similarly, pairs could be analysed 
in non-review papers and at a later time window to see if the 
pairs reach review publications. Finally, this approach could be 
tested retrospectively by analysing publications up until a des-
ignated time point and then, at a later date, investigate if iden-
tified molecules later became validated biomarkers.

Conclusion
Our approach, which enables us to find publications based on 
biomarker relationships, identified biomarker relationships not 
known to existing interaction networks. This search method 
finds relevant literature that could be missed with keyword 
searches, even if full text is available. It enables users to focus on 
emergent research, extract relevant biological information and 
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may provide new biological insights that could not be achieved 
by individual review of papers.
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